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In order to explore the carbonyl-olefin metathesis synthon,' we have con- 

ducted an array of tests of oxetane decompositions involving substituent and 

medium effects and stereochemistry and now report for the first time the stereo- 

chemical course of pyrolysis of a pair of oxetane diastereomers. 

The 2-methyl-3-phenyloxetanes (A and 2) were obtained by photolysis of acet- 

aldehyde and styrene. 
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The 5:l mixture 

rated by glc, and the stereochemistry of 

to nmr spectral data. The minor oxetane 

of diastereomers 

the photoadducts 

was assigned the 

on its doublet absorption at 0.926 ppm (Ccl&), indicating 

methyl3 (compared to 1.446 for the major photoadduct). 

(favoring L) was sepa- 

determined by reference 

cis configuration based 

a relatively shielded 

Acetaldehyde, styrene, and the isomeric 1-phenyl-1-propenes were identified 

by glc as the volatile products of pyrolysis of A and 2 in a packed flow system 

at 410-470' (contact time, 5-10 set). Analysis of the olefins with reference to 

an internal standard indicated a material balance (> 95%) between the oxetanes 

and cycloreversion products. Oxetane fraction 1 (98% trans) at moderate conver- 

sion (32-782) produced styrene and the phenyl propenes in a 2.611 ratio; propene 

stereochemistry was 93% trans and recovered oxetane had 98% trans configuration. 
4 
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Oxetane fraction 2 (93% cis) at 38-584, conversion also gave cracking products 

regioselectively (86% styrene), and the propenes had 63% cis stereochemistry. 

The percentage of trans isomer in the recovered oxetane from pyrolysis of frac- 

tion 2 had increased to 20%. The olefins were stable under the pyrolysis condi- 

tions; in particular, a-1-phenyl-1-propene (originally 96% cis) was recovered 

virtually unchanged (94% cis) on pyrolysis at 440". 
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The data indicate high stereoselectlvlty but not stereospecificity for the 

thermal oxetane cycloraversions. 596 We estimate that retention of configuration 

in product olefin is 95 f 2% and 72 * 4% for Land 2, respectively, corrected for 

isomeric contamination in starting oxetane and (for cis) for a small amount of 

isomeric oxetane produced during pyrolysis, the observation of which Is clearly 

outside of experimental error. 

Considering the observed stereochemical losses In starting material and pro- 

ducts, one might implicate diradicals, 2 and A, as important intermediates or 

transition states7 leading to product. Cyclobutane decompositions provide close 

analogy, but for several systems,8 in which substltuent ponderal effects should 

not retard stereochemlcal loss, 9 near equilibrium distributions of stereoisomeric 

product olefins (long thought to support dlradical intermediacy) are obtained on 

thermal cracking. The stereochemical crossover for 2_ is not nearly that which Is 
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to be expected for destruction of a rotationally equilibrated diradical." On 

the other hand, modest stereorandomization is consistent with the apparent 

retarded rotation about benzylic centers suggested recently for species related 

to $11 

We have noted' the absence of geometrical isomerization for one oxetane pair 

with comparison to a cyclobutane model. The isomerisation 2 + J_ is a rare example 

of such a reaction for this ring system. 
12 

Stereoretention (the ratio of cracking 

to ieomerlzationga) may be approximated by the ratio of average yields of styrene 

and A (32/13 = 2.5) at 48% average conversion of & Corresponding stereoretention 

values for cis-1, 2-dimethyl- and cis-1,2-diphenyl-cyclobutane are 4.0 
13 

and 2.1,'le - - 

respectively. Based on this measure of stereochemical loss, which assumes that 

styrene and geometrical isomer (via rotation about C1-O) arise largely from a - 

common diradical (z), mechanisms for the cyclobutane and oxetane ring systems 

appear strikingly similar. 

Although we favor presently a decomposition pathway involving dlradicals (or less 

likely dipolar species6) a combination of concerted paths cannot be ruled out by 

the stereochemical results. If the mechanism for oxetane cracking be an allowed 

concerted 02s + 02A cycloreversion, the burden of antarafaciality may rest on either 

the incipient carbonyl or olefin moieties. Proper combination of these would pro- 

duce the observed stereochemical results. Turro has suggested 
14 

that such partici- 

pation by a nascent carbonyl group is important in the diabatic cycloreversion of 

1,2_dioxetanes. Additionally, a concerted u2s + u2s pathway for oxetane decompo- 

sition must be considered in light of recent suggestions concerning the importance 

of subjacent orbital energies 15 and configuration (charge transfer) interaction 
16 

in transition states. 
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